翻訳と辞書 |
Robert Gilbert (chemist) : ウィキペディア英語版 | Robert Gilbert (chemist)
Robert Goulston Gilbert (born 1946) is a polymer chemist whose most significant contributions have been in the field of emulsion polymerisation. In 1970, he gained his PhD from the Australian National University, and worked at the University of Sydney from then until 2006. In 1982, he was elected a fellow of the Royal Australian Chemical Institute; in 1994, he was elected a fellow of the Australian Academy of Science. In 1992, he was appointed full professor, and in 1999 he started the Key Centre for Polymer Colloids, funded by the Australian Research Council, the University and industry. He has served in leadership roles in the International Union of Pure and Applied Chemistry (IUPAC), the world ‘governing body’ of chemistry. He was founding chair (1987–98) of the IUPAC Working Party on the Modelling of Kinetics Processes of Polymerisation, of which he remains a member, and is a member of the IUPAC scientific task groups on starch molecular weight measurements, and terminology. He was vice-president (1996–97) and president (1998–2001) of the IUPAC Macromolecular Division, and secretary of the International Polymer Colloids Group (1997–2001). As of 2007, he is Research Professor at the Centre of Nutrition and Food Science, University of Queensland, where his research program concentrates on the relations between starch structure and nutrition. His scientific advances have been based on developing novel theoretical and experimental methods to isolate individual processes in very complex systems. By revealing the mechanistic bases of these individual processes through a combination of theory and experiment, he has significantly deepened, and in some cases revolutionised, the understanding of whole systems in small (gas-phase) and giant (polymer) reaction dynamics. ==Unimolecular reaction dynamics==
Reactions in chemical processes are either unimolecular or bimolecular. The rate of a unimolecular reaction is an average over a vast ensemble of the rate coefficients for the microscopic events of collisional energy transfer and of reaction of a completely isolated molecule. Gilbert's work in the field of unimolecular processes started with the development of theorems for this relationship. These theorems are elegant developments in matrix algebra, proving relations that had been previously known only for particular cases. His theorems also became the basis for numerical methods that he developed to perform the requisite calculations. For this purpose, he created a computer code, ''UNIMOL'', which is widely used by researchers. He developed, with Prof J Troe, easily used approximate solutions for the pressure dependence of the rate coefficient. He provided the first solutions for cases where angular momentum conservation needs to be incorporated. His methods are used by experimentalists to fit data and extrapolate to different pressure regimes, supplanting previous tools which were of dubious validity and accuracy. His coworkers and he obtained data on the collisional energy transfer process and used them to prove the conjecture that each collision involves only a small exchange of energy. He then developed the first rigorous means to calculate these quantities from basic theory, and the first physical model for the process. His work is widely used, both for basic understanding of the transition states and by atmospheric and combustion modellers. Predicting climate change and effects on the ozone layer rely critically on this modelling.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Robert Gilbert (chemist)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|